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Abstract 

Twenty-five years of spacecraft onboard computer development have resulted in a better understanding 
of the requirements for effective, efficient, and fault tolerant flight computer systems. Lessons from eight 
flight programs (Gemini, Apollo, Skylab, Shuttle, Mariner, Viking, Voyager, Galileo) and three research 
programs (Digital Fly-By-wire, STAR and the Unified Data System) are useful in projecting the computer 
hardware configuration of the Space Station and the ways in which the Ada programming language will 
enhance the development of the necessary software. This paper reviews the evolution of hardware 
technology, fault protection methods, and software architectures used in space flight in order to provide 
insight into the pending development of such items for the Space Station. 

1. Introduction 

During the 25 years since the first flights of manned and unmanned spacecraft carrying onboard 
computers, the tasks assigned to the machines have grown in complexity and pervasiveness until now it 
is impossible to consider designing a spacecraft without including substantial computing power. As with 
any mission critical component, the reliability of computers has to be ensured. NASA's efforts to use 
computers onboard spacecraft resulted in the development of various methods of fault tolerance. 
Development of computer systems for unmanned and manned spacecraft have largely followed separate 
tracks. Systems onboard manned spacecraft used increasing numbers of redundant processors as the 
primary method of protection. Those on unmanned spacecraft, though redundant, were more innovative 
in terms of distributing tasks and processing power. The Space Station project provides an opportunity to 
merge the two tracks, taking from the manned programs experience with using high level languages, 
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software synchronization, and hrge-scale software devebpment, and from the unmanned programs use 
of distributed systems and microprocessors. This synthesis creates a system that lends itself to the use of 
Ada as the onboard software devebpment language if the problems of implementing the language on 
distributed systems can be sotved. 

2. A Taxonomy of Spacecraft Computer Systems 

A review of previous onboard computer systems is in otder to provide a basis for discussing a 
computer architecture for the Space Station. Since all previous systems have used redundancy in some 
form for fautt tolerance, a taxonomy can be established by considering the nature of the various 
redundancy schemes. Four types of systems can be identified: simplex, multiplex, functional distribution 
with full redundancy, and functional distribution with virtual redundancy. Both simplex and mttiplex 
schemes have examples in both the manned and unmanned programs, while the latter pair of types 
presently have only unmanned spacecraft systems as members. 

21. Simplex Systems 

Simplex onboard computer systems are identified by the absence of redundancy. They are also 
characterized by being part of a single subsystem of the spacecraft, specifically the guidance and 
navigation subsystem on manned spacecraft and the commanding subsystem on unmanned spacecraft. 
If the simplex computer system failed, its tasks would be suspended when possible, or taken over by a 
backup with reduced functionality. Crew and spacecraft safety would be maintained, but mission 
objectives would be compromised. Three simplex systems were developed in the 1960s: the 
programmable sequencer onboard the later Mariner missions, the Gemini Digiial Computer and the 
Apollo Guidance Computer. 

2.1 .l . Marinefs Programmable Sequencer 

Prior to the Mariner Mars 1969 flyby missions, unmanned interplanetary spacecraft camed hardwired 
sequencers. Essentially these sequencers monitored a counter that was constantly updated by pulses 
from a clock. When an appropriate time interval had elapsed, some spacecraft adiviiy would be initiated. 
For example, after the cruise period to a planet, at a time precalculated and put into the sequencer’s 
bgk, the spacecraft would orient itself and activate experiments to be done during the encounter with the 
planet. This meant that very accurate preflight navigation calculations had to be made, and that the 
sequences could not be c h a m  after liftoff. 

Mariner Man 1969 was to be a double flyby of the Red Planet. tf the spacecraft could be fitted with 
programmable sequencers, then the tarpeting and camera aiming of the second spacecraft could be 
chanoed to follow up on d i e r i e s  made by the first flyby. For instance, if a particularly interesting 
terrain feature was found, the second spacecraft could have fts encounter sequence reprogrammed from 
the earth to obtain more imaging in that area. Wdh a t ied sequencer this would have been impossible. 
Accordingly, a programmable sequencer with 128 words of memory was included. Later expanded to a 
512 word memory, this machine controlled two Mars flyby missions, two orbiters (1971), and the Venus 
and Mercury flyby mWon in 1973. The latter demonstrated the flexibility of the machine because the 
mission was so complex one software bad was too small to do the pb. Therefore, a seriis of complete 
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software bads were prepared and sent up to the spacecraft as the mission progressed [Hooke 19731. 
Subsequently, in flight reprogramming became a planned and common feature of interplanetary missions, 
greatly reducing memory requirements and increasing flexibility. 

Backup to the programmable sequencer was the same hardwired sequencer used in the early Mariner 
missions. If the programmable sequencer had failed, then the mission could continue, but only with 
preprogrammed sequences. Switching to the backup resulted in reduced functions. A similar situation 
existed in the two sirnplex manned spacecraft systems. 

2.1.2. The Gemini Digital Computer 

The Gemini program was more than a tW0-rf-m folkwon to the Mercury spacecraft. It was a test bed 
for guidance and navigation techniques considered essential for the Apollo lunar landing program. Two of 
the more diffiilt of these were rendezvous and computerantrolled reentry. A small onboard computer 
customdesigned and programmed by IBM Corporation provided real-time calculations of maneuvers for 
the astronauts. During a rendezvous operation, required vekcity changes would be displayed and the 
astronauts would fire thrusters and maintain attitude during powered maneuvers. The spacecraft had 
lifting capability suffiiient to adjust the landing point within a rectangular footprint 500 miles long and 40 
miles wide. The computer was programmed to target within the footprint. Each major function was 
contained in separate single software modules. By using a rotary switch and the start button, a program 
could be selected. When the machine was not needed, such as during coasting in orbit, it could be shut 
Off. 

If the computer failed, its tasks would either be abandoned or done by less effective means. A 
rendezvous could be canceled. Computer controlled reentry could be replaced by pilot control, such as on 
the Mercury missions. Either way, crew safety was maintained, but mission objectives were not 
accamplis hed . 

2.1 3. Apollo’r Simplex Systems 

NASA contracted with the Instrumentation Laboratory (now the C. Stark Draper Laboratory) of the 
Massachussetts Institute of Technology for the Apolb guidance system. A computer first built for the 
Polaris submarine launched ballistic missile was redesigned as the Apollo GuMance Computer. Software 
for the computer functioned as a priority-interrupt system with some cyclic characteristics. Jobs were 
scheduled and monitored by an executive program. Code was executed by an interpreter. A typical 
software bad consisted of several dozen “programs” which could be activated by the crew. Key mission 
phases such as lunar orbi insertion, landing, lunar orbii rendezvous, and entry into the earth’s 
atmosphere were computer intensive activities. 

The Apolb was a two-part spacecraft: command module and associated propulsion, and the lunar 
module. Each module had a computer, with, of cou~se, different applications programs, but the same 
interpreter and executive. If the command module’s computer failed, the mission would be aborted and 
return to earth would be handled by doing maneuver calculations on the ground and sending instructions 
to the crew. If the lunar module’s computer failed, it had an onboard backup. The backup computer was a 
small device built by TRW Corporation that could guide the ascent portion of the lunar module to a 
rendezvous with the command module. That was its wle function, so a computer failure during lunar 
descent would have caused an abort of the landing attempt. 
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The o b v i s  shortcoming of simplex systems is that a single computer failure severely damages the 
mission. This is apparent even in the systems described here, even though their use was limited to one 
subsystem. As NASA entered the 1970s, spacecraft that depended on computers for more than one 
function were being designed. On those spacecraft, computer failures would greatly affect crew and 
spacecraft safety. The first method of reducing the impact of such failures was the development of 
multiplex systems with full redundancy. 

22. Multiplex Systems 

Three spacecraft designed in the first half of the 1970s used fully redundant computers. The Viking 
unmanned Mars orbiters and landers and the Skylab orbiting space station both had duplex systems, 
while the Space Shuttle orbiter and its aircraft predecessor had more than two computers. The 
introduction of redundancy as a method of fault tolerance necessitated the addiiion of management 
software absent from the simplex systems. 

2.2.1. Viking and Skylab: Dual Redundancy 

The Viking missions to Mars were, in many ways, the most Complex unmanned flights yet attempted. A 
two part spacecraft was placed into Martian orbit, whereupon the orbiier portion began a search for a 
landing site. When one was chosen, the lander portion descended to the Martian surface. Each part of 
the spacecraft functioned for years, the ofbiier mapping the planet and conducting experiments best done 
from space, the lander doing chemical and biological analyses of the Martian soil and sending detailed 
images of the surface back to earth. Both the orbiter and lander had dual computer systems. Each could 
support its part of the mission independently, or could work cooperatively on separate tasks. The orbiter 
computers were primarily a replacement for the programmable sequencers carried on Mariners, with the 
same command and control functions. The lander computer had to control the descent and later the 
operation of the surface station. The Jet Propulsion Laboratory, whiih built the orbiter, designed a special 
purpose processor for its spacecraft. The lander, built by Martin-Marietta Corporation, used an existing 
Honeywell computer. 

Skylab's dual computers were also commercially available, coming from the IBM line of 4Pi processors 
that were derived from the 360 architecture. The Skylab computers were related to their manned 
spacecraft predecessors in that they were part of a single subsystem, in this case attitude control. This 
space station used a complex set of control moment gyros for stabilization and attitude maintenance. The 
computers were programmed to execute scheduled tasks cyclically, including a set of self-tests. Each 
cycle the primary computer would deposit a Wit status word to a special register in a common section 
of the system. Thii register and its associated logic were constructed of triple modular redundant circuits 
for r e l i i l i .  If the secondary computer detected that the primary was failing its self-tests, it would take 
the status word from the common section before the failing computer could corrupt it, and shut down its 
partner. Such a failure never occurred during the lifetime of the Skylab, but a manual switchover was 
done to prove that the system was reliable no matter w h i i  machine was designated primary. 

Even though the Viking and Skylab computers were fully redundant and provided a high degree of 
reliability, a dual system is insufficient for manned operations. If bne half of a dual system detects a failure 
in the other half, it follows that the failing computer might well detect a failure in the good computer, and 
will try to shut it down. Also, there is a possibility that the computer detecting the failure is actually the one 
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failing, and that the detection k incorrect. An obvious solution to this dilemma is to add more computers, 
each running identical software-the solution chosen for the Shuttle. 

2.29. Redundancy for Digital Fly-by-Wim AetospacraR 

NASA's Space Shuttle is different from all the other spacecraft so far discussed in that the onboard 
computers have tasks outside of a single system or small set of systems. The Shuttle computers control a 
large number of spacecraft functions, including such mundane items as the opening and closing of the 
cargo bay doors. Most importantly, the Shuttle has a digital fly-by-wire control system. This means that 
where mechanical linkages exist in conventional aircraft control systems, the Shuttle has electrical and 
eledronic connections between the controlling devices, the computers, and the control surfaces. When an 
astronaut moves the hand controller in the Shuttle, signals are generated and transmitted to the 
computers, which then generate signals to the actuators at the control surfaces. Therefore, a software or 
hardware failure makes the control system inoperable, and even a short loss of control in a critical 
mission phase wouM be disastrous. Since early research showed that the most likely source of failure in 
an avionics system would be the computers, NASA chose to increase the levels of redundancy of the 
primary computer system to provide sufficient protection. 

At first, the level of protection was what has been termed "fail-operationaVfail-operationaWail-safe." If 
one computer fails, then the spacecraft is still operational, if a second fails, it is operational, but should 
return to earth because it has reached fail-safe level, at which another failure would mean seriius danger. 
The fail-safe level escalated to three computers to avoid the standoff situation. The sum of ths is that five 
computers were necessary and NASA accordingly acquired five IBM AP-101 machines for each orbiter. 
Later adjustments to the design reduced the level of redundancy to failoperational/fail-safe, but the fifth 
computer was kept on the spacecraft as a backup f l iht system that could be activated by the crew in 
case of a catastrophic failure of the primary. The backup can only control the ascent and descent of the 
orbier, and by itself can not complete a mission. 

Of central concern to the Shuttle designers was the development of a redundancy management 
scheme. Fortunately, NASA was already engaged in a research program that could shed direct light on 
the subject. The Dryden Flight Research Center at Edwards, California, had been conducting a digital 
fly-by-wire test program using a modified VougM F-8C aircraft. A single Apollo Guidance Computer was 
installed in the aircraft to provide flight control. An electronic analog system acted as a backup, but it 
never was needed. Dryden's research team realized that a simplex system would never be acceptable for 
routine use, 60 il was exploring a dual computer system when officials at the Johnson Space Center 
contacted them about installing three of the same computers to be used in the Shuttle in the F-8 and thus 
tryino out methods of integrating multiple machines into an avionics system. Dryden agreed, and three 
AP-101s were installed and flown on the F-8. Several single computer failures occurred during flight, none 
of which endangered the aircraft. 

The primary problem in managing multiple computer systems is failure detection. It was reasoned that 
if the software could be compared at regular intewals, then a failing computer would be obvious because 
its results would be different from the results of its partners. Comparing checksums consisting of the 
components of a number of parameters is a simple way of doing this; however, due to dfferences in the 
computer clocks, the machines would quickly reach the point where they were out of step, and anomalies 
would show up in the checksums even though the machines had not failed. To overcome this problem, 
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the machines had to be synchronized. Each time the software executes an input operation, output 
operation, or changes the module being executed, a three-bl discrete signal is sent on a dedicated bus to 
the other computers. The sending computer waits up to four milliseconds for its partners to check in with 
an identical signal. If the signals do not agree, of if the time limit expires, the computer which failed to 
check in properly is indicated to be failing, and the computer that detects this error goes on. Due to fear of 
generic errors, the computers are not capable of shutting each other off, only the crew can do that in 
response to the failure signals. 

Basically, multiplex systems provide fault tolerance by layers of redundancy. The disadvantages of this 
are that entire systems must be replicated at least three times and more reasonably four times to provide 
the reliability needed by mission critical systems. In a computationally intensive environment, such as that 
on the proposed Space Station, so many processors wouM have to be replicated that the increase in 
power consumption and other resources devoted to the computers would be prohibitive. Other forms of 
reliability insurance developed for the unmanned flight programs may provide more sensible solutions for 
the Space Station. 

2.3. Functional Distribution with Full Redundancy 

NASA's longest lived interplanetary spacecraft are the two voyagers launched in 1977 and still working 
successfully, as proved by the recent flyby of Uranus. The Voyagers carry a functionally distributed set of 
three pairs of redundant computers. Probably most of the reason why this computer configuration was 
chosen is the structure of the Jet Propulsion Laboratory. Different sections of the Laboratory contribute 
different components to a spacecraft. In the case of Voyager, the section that builds the command system 
reused the computer developed for the Viking orbiier with an almost identical software structure. The 
attitude control system developers used a speeded up version of the command computer and the flight 
data system had a newly developed machine. Each of the three groups independently determined that 
the inclusion of a computer system was the best way for the specific tasks involved to be accomplished. 

One change caused by adopting functional distribution was the need to communicate with other 
computers instead of hardwired logic devices. Most intercomputer communication consisted of 
commands and signals relating to internal tests. More complex communications were required by the next 
level of unmanned spacecraft systems. 

2.4. Functional Distribution with Virtual Redundancy 

The next major interplanetary spacecraft designed after Voyager was Galileo, a Jupiter atmospheric 
probe and orbiter. Galileo cames a dual computer system for attitude control and pointing that uses an 
off-the-she! microprocessor, the ATAC-16, and is programmed in a hgh level language, HAUS. Its 
command and data system also uses commerically available microprocessors, six RCA 1802s in two 
strings of three. This system was derived from research sponsored by the Jet Propulsion Laboratory 
concerning reliable computer systems for unmanned spacecraft. 

Beginning in the early 1 9 6 0 ~ ~  the Laboratory sponsored the design of a computer called STAR (for Self 
Testing and &pair) that consisted of collections of multiple copies of each major component (Avbienis 
19681. For instance, memories, inputloutput devices and the like were triplicated. A special piece of 
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hardware called the Test and Repair Processor, or TARP, had five copies. When the computer was 
operating, one of each subcomponent and three TARPs were powered up and running. If the TARPs 
voted that a component was failed, they activated one of the spares. If the vote had not been unanimous, 
the dissident TARP would be shut off and another activated. In this way no more than the minimum 
number of components would be powered at any given time. The weakness of ths scheme is that a 
failure of the switches used to turn off bad components and turn on ones would negate the fault 
tolerance. However, the concept of a single computer with virtual redundancy wwived to the next round 
of research. 

Research initiated after STAR led to the construction of the Unified Data System in the early to mid 
1970s [Rennels 19781. Here the emphasis was on several processors working cooperatively. Certain 
processors, called High Level Modules, would communicate only with other processors, called Terminal 
Modules. The Terminal Modules would deal with spacecraft systems or the outside world. Conceptually, 
by carrying several High Level and a larger number of Terminal Modules, each communicating by means 
of multiple busses, and sharing numerous memory modules, the system coukl function with a variety of 
combinations of modules, memory, and bus connections. This way a single processor failure would result 
in a change of the configuration, but no degradation of performance unless a number of different failures 
OCCUKed. 

Designers of the Galileo command and data system did not fully adapt the concept, even though they 
adapted the terminology. Two 1802s are assigned as High Level Modules, four are Low Level Modules. 
Several memories and redundant busses are part of the system. However, it is fundamentally separated 
into two redundant strings. Even so, the software is constructed in what are termed ”virtual machines” and 
is distributed over the several processors. From the Unified Data System and the actual Galileo software 
some hints for a possible Space Station computer architecture can be derived. 

3. Computer Architecture for the Space Station 

The Space Station will be different from any previous manned spacecraft in tens  of its computational 
needs. In fact, It will be much cbser to an unmanned spacecraft. This is primarily because the guidance 
and navigation tasks on a Space Station are minimal compared to what a spacecraft like the Shuttle 
requires for active flight control. However, considerable computational capability in the areas of data 
acquisition and analysis, altitude control, lire support, and spacecraft health monitoring will be necessary. 
Wfih ths variety of tasks, It is logical to imagine that the final configuration of the computers onboard the 
Space Station will be a distributed system, with physical processors embedded in the hardware built to 
accomplish each function. Thus the Station’s computer systems will resemble the functional distributions 
used on Voyager and Galileo, rather than the centralbed systems used on the Shuttle.- Questions of 
redundancy can then be handled at the local level. Some systems such as life support are so critical as 
to require fault protection to the same degree as fliiht control, and will require multiple dedicated 
processors for redundancy. Other systems can be virtually redundant in that their tasks can be transferred 
to another processor in another system in case of a failure. Perhaps a common pool of processors can be 
made available to host tasks offbaded from failed machines. In any case, the intent of a hardware 
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architecture for the Space Station should be to provide fault tolerance relative to the importance of the 
systems, and to avoid carrying large numbers of resource-hungry multiplex systems. 

4. Implementing Space Station Onboard Software with Ada 

Since Ada has already been designated as the devebpment language for the Space Station, its 
strengths and weaknesses in implementing software for its potential computer architecture are of interest. 
Ada's strengths in developing this type of system lie in its inherent ability to handle concurrency, both in 
terms of data sharing and Synchronization, and in hiding mechanisms of concurrency in the programming 
language. Fundamentally, the entire sohare bad for the Station could be created as a set of tasks, 
some of which will run individually on separate processors, some of which will share a single processor, 
but all of which can be considered as part of a lbrary of related programs. This was impossible in 
previous distrikrted systems in which the software for each computer was written separately in different 
languages, sometimes in a mix of high level and low level languages, and interconnected with great 
difficulty. The chief weakness of Ada at this point in time is not the language itself, but the lack of 
implementations of it that make use of its full range of features, particularly those most applicable to the 
Space Station. 

4.1. Ada Features Most Useful for Distribution and Fault Tolerance 

Since the original purpose of designing Ada was to serve the devebpment of large and real time 
systems, several features of the language are directly applicable to programming the heterogenous 
machines on the Space Station. 

4.1 .l. Tasks 

Using Ada, programs can be made up of a variety of units, inctuding tasks. A task is a program unit 
that runs in parallel to other tasks, and to the main pmgram, which is implicitly also a task. Moreover, it 
can run either interleaved with other tasks in one physical processor or as a single process on a machine 
in a multicomputer system. Tasks on the Space Station would have varying degrees of interaction. For 
instance, a task monitoring spacecraft health would periodically wish to receive signals from processes 
throughout the Station in order to make sure everything is still functioning. These messages would be far 
less frequent than three computers running identical tasks as part of a mission critical, locally redundant, 
synchronized subsystem. Regardless of the level of communication, the information to be exchanged can 
be abstracted in the task body, hiding the complexity of the interior of a task from programmers working 
on associated tasks. 

4.1 9. Rendezvous 

Previous parallel ~mputations in spacecraft shared information by message passing or common data 
pools. On Voyager, messages are sent between the command computer and attitude control computer as 
single units. On the Shuttle, the high level language HAVS provides for the dedaration of common data 
shared by several scheduled parallel processes. M a  provides for wnunon data using pragmas for 
shared information, but the most common form of information exchange on the Station would probably be 
message passing, usable for simple data exchange or for synchronization. Message passing is 
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implemented in Ada using the rendezvous, in which a task will be bbcked while attempting to send or 
receive a message. When both sender and receiver reach the point in their respective task bodies where 
they are ready to do the exchange, a rendezvous occurs, data is transferred, and both tasks continue. 
These rendezvous can take place between widely distributed tasks. 

4.1.3. Exception8 

One Ada feature critical for Space Station systems is the abi l i  to gracefully handle predictable errors. 
Even though most Space Station subsystems could have short duration failures without endangering the 
crew, actively handling the failures as opposed to reacting to existing conditions is almost always 
preferable. Exception handlers can be part of each task, and, used creatively, can eliminate complete 
shutdowns of subsystems. 

4.1.4. Modularity 

Since the Space Station is expected to operate over a long period of time, with many changes in its 
component modules, the software used on it must be easily modifiable. Ada’s ability to separately compile 
tasks that have been added or modified and include them in the existing software bad is a significant 
advantage. NASA has made good progress in reusing software in preparing Shuttle flight loads. 
Consciousness of reusability can be easily transferred to the Space Station project since the development 
language directly supports such techniques through the use of generics. 

4.2. An Example: Implementing Shuttle-Like Computer Failure Detection in Ada 

As an example of tasks, rendezvous, and exception handling, the Ada code in Figure 1 on the next 
page implements the Shuttle computer failure detection and synchronization scheme in a two processor 
system. 

5. Summary 
Ada has many characteristics that support the development of software that implements fault tolerance 

schemes developed for previous spacecraft. Also, the ability to run on distributed systems essentially 
transparently to programmers working on the Space Station software means that a variety of redundancy 
configurations can be used. This, of course, depends on continued research and development concerning 
implementing Ma. Although some attempts have been made to implement Ada on several cooperating 
processow, the nuances of doing so are still not all understood [Ado 19841. Also, the progress of Ada 
development environments, though picking up steam, is still behind original expectations. Adoption of 
existing Ada development technobgy by the Space Station project coupled with support of efforts 
designed at multiprocessor implementations provides the safest route to completion of Space Station 
software in the early 1990s. 
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